Open Systems Architecture for Legacy Aircraft (OSALA) Open Systems Project Engineering Conference (OSPEC) FY 98 Status Review 29 April - 1 May 1998 Mr. Juan M. Carbonell AFRL/AAS, Project Manager Mr. Mikel J. Harris Lockheed Martin, Engineering Spec. Sr. | REPOR | | Form Approved OMB No.
0704-0188 | | | | | | | | |---|--|---|--|--|---|--|--|--|--| | Public reporting burder for this collection of information is es
and reviewing this collection of information. Send comments
Headquarters Services, Directorate for Information Operation
law, no person shall be subject to any penalty for failing to co | regarding this burden estimat
and Reports (0704-0188), 12
and nply with a collection of info | e or any other aspect of this colle
215 Jefferson Davis Highway, Su
ormation if it does not display a c | ction of information, include 1204, Arlington, VA | uding suggestions for reducin
22202-4302. Respondents sho
ol number. PLEASE DO NO | g this burder to Department of Defense, Washington
ould be aware that notwithstanding any other provision of
T RETURN YOUR FORM TO THE ABOVE ADDRESS. | | | | | | 1. REPORT DATE (DD-MM-YYYY
29-04-1998 | 7) 2. REP
Briefin | | 3. DATES COVERED (FROM - TO)
29-04-1998 to 01-05-1998 | | | | | | | | 4. TITLE AND SUBTITLE | • | | 5a. CONTRACT NUMBER | | | | | | | | Open Systems Architecture for Legac | | | 5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER | | | | | | | | Open Systems Project Engineering C Unclassified | onference (OSPE | view | | | | | | | | | 6. AUTHOR(S) | | | | 5d. PROJECT N | UMBER | | | | | | Carbonell, Juan M.; | | | 5e. TASK NUMI | BER | | | | | | | Harris, Mikel J.; | | | | 5f. WORK UNIT NUMBER | | | | | | | 7. PERFORMING ORGANIZATION
AFRL/AAS
xxxxx | N NAME AND A | | 8. PERFORMING ORGANIZATION REPORT
NUMBER | | | | | | | | xxxxx, xxxxxxx | | | | | | | | | | | 9. SPONSORING/MONITORING A | GENCY NAME | AND ADDRESS | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | Open Systems Joint Task Force (OSJ
1931 Jefferson Davis Highway | TF) | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | | | | | Crystal Mall 3, Suite 104
Arlington, VA22202 | | | . , | | | | | | | | 12. DISTRIBUTION/AVAILABILIT
APUBLIC RELEASE | TY STATEMENT | | | | | | | | | | 13. SUPPLEMENTARY NOTES | | | | | | | | | | | 14. ABSTRACT | | | | | | | | | | | See Report. | | | | | | | | | | | 15. SUBJECT TERMS | 105. [7 | IZ LINAITATIONI | 14.0 | LO NAME OF F | DEODONOIDI E DEDOON | | | | | | 16. SECURITY CLASSIFICATION | l c | I7. LIMITATION
OF ABSTRACT
Public Release | NUMBER
OF PAGES | http://www.acq.d | RESPONSIBLE PERSON osd.mil/osjtf/library/library_alpha.h | | | | | | a. REPORT b. ABSTRACT c
Unclassified Unclassified L | . THIS PAGE LINCLASSIFIED | | | 19b. TELEPHO
International Area C
Area Code Telephol
703767-9007
DSN
427-9007 | NE NUMBER
code | | | | | Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18 ### **OSALA Program Overview** #### **Studies** - CRAD - Legacy Aircraft - IR&D LMTAS #### **Studies** - Joint Strike Fighter - Fiber Optics - Integ. Sensors - JTA v2.0 #### **Industry** - Standards - Fighter Plans #### **Definition Task** #### **Studies and Analysis** - Strategies - Open System Candidates - Cost Effectiveness #### Assessment - OSA Approach - Metrics - Software Reuse **Transport Support** · Legacy Systems - Hardware - Networks F-16 Baseline #### Commonality Survey #### **Point Design Benchmark** - Benefits - Cost Benefits - Commercial Mix - Common Hardware #### **Proof-of-Concept Evaluation Task** Open System Standards (Networks & Wireless) **System** Performance **Network Performance** - User - Needs - Systems Arch Building Codes **Final** Report Based on Available Funding Open System Study ## **Program Schedule** | TASKS CY Months | 97 | | 5 6 7 | 98 | 44 40 40 | 99 | |--|-------|-------------------------------|------------|--------|----------|--------------| | OSALA Program Schedule | Kicko | | Review | 8 9 10 | 11 12 13 | Final Review | | Definition OSA Studies and Analysis OSA Assessment OSA Legacy Weapon System Commonality OSA Point Design Benchmark Proof-of-Concept Evaluation | | | | | | | | Reviews and Meetings Aligned to LCICTILA Program Schedule Status Reports and Deliverables • Project Planning Chart Revision • Funds & Man-Hour Expenditure Report • CFSR • Status Report • Contractor's Billing Voucher • Final Technical Report | • | ** | PMR A TIIM | | | Final Review | ## **Project Organization** #### Lockheed Martin Tactical Aircraft Systems Vice President Product Engineering W.B. Anderson > Director Software R. K. Moore #### **Project Team** USAF Program Manager AFRL Mr. Juan M. Carbonell OS/JTF Program Ltc. Glen T. Logan **Project Team Lead** Mr. Mikel J. Harris #### **Lockheed Martin Team** Jon Preston (Software Systems) Tony Schiavone (Architecture and Hardware) Michael DelPrincipe (Embedded Systems) ## **OSALA Progress Summary** - Completed Assessment of Open System Standards - Completed Analysis of F-16 Avionics Open System Insertion Opportunities - Initiated Wireless Ethernet Studies and Analysis - OSALA Demonstration: Enhanced Diagnostics Software Integration Started Under Internal IR&D - Benefits Analysis Task for Open System Standards to be Concurrent with F-16 RMS/LCC Analysis ## **Technical Progress Summary** - Roadmaps Complete - Technology Plans & Roadmaps Complete - System Baseline Planning Document Complete - Network Testing Complete - Wiring Study Complete - System Requirements Review Sep. 11, '97 - F-16 HSDB Insertion Team Review, 13 Nov. 1997 - Packaging/Enclosure Studies Complete - Program Management Review No. 2 7 Jan. 1998 - Technical Interchange Meeting 24 February 1998 - F-16 Production Planning and Transition Complete ### **Technical Activity Forecast** - Program Technical Report Documentation - Briefing to F-16 SPO May 1998 #### Coordination With F-16 Production Planning... - Insertion of Open System COTS-based Solutions Into Aircraft Avionics - ATM Modeling Tasks - RMS/LCC Benefits Analysis # **Program Meetings and Reviews** | Program Reviews | Date Oct 96 - Dec 99 | Location | | | |-------------------------------------|----------------------|---------------|--|--| | Kickoff Meeting | October 96 | Dayton, OH | | | | Program Management Review (PMR) | February 97 | VTC | | | | Technical Interchange Meeting (TIM) | April 97 | Ft. Worth, TX | | | | System Requirements Review (SRR) | September 97 | Ft. Worth, TX | | | | OSALA Kickoff | October 97 | Ft. Worth, TX | | | | PMR No. 2 | January 98 | VTC | | | | TIM No. 2 | February 98 | Washington | | | | System Design Review (SDR) | May 98 | Ft. Worth, TX | | | | and Lab Demonstration | | | | | | PMR No. 3 | June 98 | VTC | | | | TIM No. 3 | September 98 | VTC | | | | OSALA Final Review & Demo. | December 98 | Ft. Worth, TX | | | | * VTC - Video Teleconference | | | | | ## F-16 Network Study Completed #### Purpose - ✓ Determine What Is the "Best" High Speed Bus/Network for the F-16 - Working Constraint - ✓ High Speed Network Is to Go On a "36 Month" Airplane With January 1998 Go-Ahead - ✓ Production Incorporation, Retrofit a Consideration - → Harnesses Will Be Modified - ✓ Commercial Build and Procurement ## F-16 Study Summary - Generated List of Evaluation Criteria - 29 Criteria Identified - 9 used for Down Select - Developed Reference and Achievable Near-Term Architectures - Estimated Throughput Required of High Speed Network by Each Architecture - Down Selected to 2 Candidates - Asynchronous Transfer Mode (ATM) - Fibre Channel ### **Virtually-Integrated Avionics Architecture** ### **Typical Drawing of the F-16 Architecture** #### COTS Technologies Can Be Used To Produce A Low-Cost Open System Architecture ## F-16 Bandwidth Requirements #### F-16 Bandwidth Requirements...CY2000 | Category | Required
Bit Rate
Mbits/Sec | Quantity in
Reference
Arch | Total Bit
Rate
Required | | Quantity in
Near Term
System | | | |--------------------------------|-----------------------------------|----------------------------------|-------------------------------|--|------------------------------------|-------|--| | Basic F-16 | 5 | 1 | 5 | | 0.2 | 1 | | | Download Picture to JASSM | 7.4 | 1 | 7.4 | | | | | | Change Map Scale | 7.4 | 1 | 7.4 | | 1 | 7.4 | | | Real-Time Video to Displays | 45.3 | 6 | 271.8 | | | | | | Air-to-Air Radar Improvements | 0.09 | 1 | 0.09 | | 1 | 0.09 | | | ESM Sensor | 0.5 | 1 | 0.5 | | | | | | Imaging Sensor (FLIR/SAR/GM) | 45.3 | 3 | 135.9 | | 3 | 135.9 | | | Air Vehicle Systems | 1 | 1 | 1 | | | | | | Data Link | 0.5 | 1 | 0.5 | | 1 | 0.5 | | | Helmet Mounted Display | 0.2 | 2 | 0.4 | | 1 | 0.2 | | | Cockpit I/O | 0.25 | 1 | 0.25 | | | | | | Video Recording (n R/T Videos) | 45.3 | 7 | 317.1 | | | | | | | | | 747 Mb/sec | | 145 Mb/sec | | | # Mission Requirements Indicate A Need for Increased Network Bandwidth ## **Network Topology** # Increasing Network Bandwidth Is A Key Enabling Technology #### **Problem:** - Bandwidth Limited - Linear Growth in Buses - Exponential Growth in Memory and Throughput - Limited by Physical Wiring - Software Cost Prohibitive - Multiple Unique Networks #### **Alternative:** - Mine Existing Wiring Bandwidth - Insert Commercial Network - Migrate Modified LRUs from 1553B to COTS Network Open Systems Architecture - Define Process for COTS Insertion into Legacy LRUs - Incrementally Upgrade SW/HW - Single Common High Speed Net. A "Cray-in-the-Box" Is No Good Unless The Data Can Be Moved Out ## **Technology Comparison** | Producible (Yes/No) Most Tikel Label Availability (Yes/No) Producible (Yes/No) Most Tikely of Standard (Yes/No) Producible (Yes/No) Most Fisk | | | | | | | | | | | | |--|-----|---|--------------|---------------------------------|-----|-------|------|-----|-----|-----|--| | WDM | No | 3 | FO | FO
>10 G | Yes | Bus+ | High | Yes | No | No | Wave Division Multiplex (IRAD) | | ATM | Yes | 1 | ALL | FO >10G
Cu 60M | Yes | sw | Med | Yes | Yes | Yes | Asynchronous Transfer Mode OC-3c, 155Mbps (STS-3c) | | FC | Yes | 1 | ALL | FO 800M
Cu 30M | Yes | Loop | Med | Yes | Yes | Yes | Fibre Channel
1G FO Loop, STP CDDI | | FW | Yes | 2 | STP+2 | Cu 200M
4.5m limit
4+2pwr | Yes | Chain | Med | Yes | No | No | Firewire (IEEE 1394-200MB/s) | | GbEth | Yes | 2 | All | FO 300M
Cu 20M | No | sw | High | No | No | No | Gigabit Ethernet
FO 1G or STP Fast Ethernet | | 1553B | Yes | 1 | Coax,
STP | Cu
800M | Yes | Bus | Low | Yes | Yes | Yes | Mil-Std-1553/B | #### **Assessment** - Fibre Channel Is a Fairly New Standard and Its Persistence Is Unknown - Currently, Switches Are Not Available for Fibre Channel - Software Extensions Required for Real-Time Operations - ATM Is Firmly Entrenched in the Telecommunications Industry - Provides Support and a Growth Path - ATM Demonstrated on Existing 1553 Cable - Provides Retrofit Opportunities to Existing F-16s - Only Minimum Group A & B Changes Needed A Switched ATM Network Is the Baseline for Near-Term F-16 Programs #### **Production F-16** ## **Proposed F-16 Weapons Interface** - Optical Fiber Added to All Store Stations - Termination at Switch Location - Network Terminals Added to Subsystems in Future Modifications ... Switch to be Located in Mux Matrix Assemblies # Typical Block 30 MUX Matrix Assembly With MIL-STD-1553 Termination ### **Existing Multiplex Assembly Enclosure** Chassis: 8.2" x 8.1" x 3.0" # **Equipment Description Discrete Signal and Power Interface Switching Network** #### **Functions/Features** - Mother Boards - 8 and 14 Layer - 2 Relay Daughter Cards - 6 Relays Per Card - 2 MUX Daughter Cards MIL-STD-1553 Studs for 4 Buses, 8 RTs - Components - 16 Transformers - 33 Resistors - 4 Tranzorbs - Interconnections (J-Box) - Through Hole Technology PCBs # **Existing Coupler Modules Are In Use In Legacy Aircraft** Chassis: 2.5" x 0.8" x 3.0" Equipment Description Enclosure Provides Impedance Matching and Fault Isolation for the MIL-STD-1553 Data Bus, Can Be Housing for Network Switch #### Functions/Features - High Voltage Protection for Media - Thermoplastic Chassis - Through-Hole Technology Printed Circuit Board # **Existing Mil-Std-1553/B Wiring Can Be Used to Increase Network Bandwidth** ## **Display-MUX** ## **Display-MUX AFT Assembly** ### **Benchmark Configuration** ### Benchmark 100 BaseTX Ethernet Over 1553 Cable ### Benchmark 155 Mbps ATM Over 1553 Cable #### **Benchmark Conclusions** - 1553 Cable Works for Both ATM and Fast Ethernet - UTP5 and 1553 Cable Results Nearly Identical - Limiting Factor for File Transfers is Operating System Overhead and Hard Disk Speed - Impedance Matching is not a Factor Except for Long Cable Runs (Ethernet > 100 feet, ATM > 150 feet) **Existing Cable is Not an Issue in the Design of a Faster Network** ## **ATM Test Configuration** ### **ATM Test Setup** - Conduct Experiments Using Actual Hardware and Operational Equipment - ✓ F-16 ITS Block 50 Station with ARC-182 UHF/VHF Radio - ✓ Actual Blade Antenna Configurations - ✓ Actual RFI/EMI Noise Environment (All other F-16 LRUs and MIL-STD-1553/B Traffic, Power, Controls, etc.) - Perform Functional Tests Using UHF/VHF Radio - ✓ Receive / Transmit on Authorized Channels - **→** UHF 284.1, 292.5 MHz, VHF 123.575, 123.4 MHz - ✓ Subjective Evaluation of Changes in Signal Quality - ✓ Monitor Multiple UHF/VHF Channels for Degradation - Load ATM Network with Maximum Traffic - Measure Cross-Talk on Adjacent Wires #### **ATM Test Results** - Subjective Evaluations - ✓ No Change in Signal Quality in VHF or UHF - ✓ No Change at Cockpit or at Remote Site - ✓ No Interference on Monitored Channels - Objective Evaluations - ✓ No Cell-Drops or Loss of Data on ATM Network - ✓ Crosstalk Measurement Peak-to-Peak Voltage Average Signal Noise Increase: 18-20 mv Measured Noise (Before ATM Applied): 39-42 mv RFI and EMI Can Be Managed ### **ATM Test: Post Analysis** - Cable Noise On the Aircraft is Expected to Be Less Than the System Integration Lab (SIL) Test Station - ✓ Shields of the 1553B Cables Inside the Test Station Were Ungrounded for Ease of Connection to the Station - ✓ In the F-16, Both Ends of MUX Cable Shields Are Grounded - ✓ In the F-16, MUX Cable is Grounded at the Backshell of Every Disconnect - Actual F-16 vs the SIL Test Station: - ✓ The Average Noise Measured on the F-16 Aircraft Could Be 1/3 Lower Than That Measured on STS - ✓ The Resulting Average Crosstalk Noise is Expected to be 1/2 that Measured on the STS ### **Summary** - Legacy Aircraft Are Implementing Open System Standards - ✓ Transition to Open System Standards for Legacy Aircraft Avionics has Started and Will Accelerate (LRUs, Networks) - ✓ DoD Acquisition Processes and Strategies Are Working on Legacy Aircraft Product Lines - Evolving Fielded Weapon Systems to Open System Approaches Is the Challenge - ✓ Need Champions in the Logistics Support Communities - ✓ Need Sustained Development Funding for Aircraft Infrastructure Evolution (Flight Test, Tech Demos) # Open System Architecture for Legacy Aircraft Executive Summary Mikel J. Harris # The Majority of Our Tactical Force Through 2020 Will Be Legacy Aircraft # Strategic & Tactical Airlift Inventory Projections # F-16 Dominates the USAF Force Structure Until JSF Introduction #### **Avionics Upgrade Environment** - The User Must Accomplish More With His Fleet of Existing Aircraft - Limited Funds and Aging Fleet (Average Age of All Fighters 18yrs @ 2010) - Modifications Must be Incremental, Modular, and Rapid - Available Funding Profiles Will Not Allow Major Physical Upgrades - Politics are the Enemy of Long Programs - We Must Work Within the Aircraft Physical Architecture (Wiring, Cooling, etc.) - Physical Changes Drive Mod Cost Exponential (Kills Program) - No Software Modification is Minor - Test and Validation are the Cost Drivers (Not Design and Coding) - Logistics Tail Plays Key Role in Upgrade/Mod Decisions (Have Final Vote) - The Cost Here Continues Throughout the Life Cycle (Key Words 1 Level Maintenance) - Commercial Market Drives the Electronics Industry (Not DoD) - We Must Work Within This Environment for Affordability - Key Element is Rapid Commercial Parts Obsolescence (Not Environmental) - We Must Work Within the Avionics Vendor Chain of Capability - Vendors Must Protect Their Ownership of Functionality (i.e. CNI, EW, Radar, etc.) - DoD and Primes Must Prevent "Vendor Vanish" ## **Open System Studies** #### Studies Were Directed Towards Legacy Avionics Architecture... | Studies and Analyses | Summary of Preliminary Results | |--|---| | Global Reach Open Network | Aircraft Weapon Systems and Support
Systems Should Be Directly to the Military
Networks for Ground Operations Repair,
Maintenance, and Support | | Common Real Time Operating System Interface for Software | Commercial Real-Time Operating Systems Have Been and Can Be Adapted | | Open Network Architecture Protocols | Asynchronous Transfer Mode and Fibre Channel Are Interim Network Solutions (Integrated Sensor System Program to Determine Radar Protocols) | | Open Standards and Interface | Commercial Open Standards Are
Available to Replace Existing LRUs | ...to Evolve Aircraft Weapons Systems to Open Systems Standards. ## **Conclusions and Recommendations** - The Big Pay-off Is in Opening the Federated Architecture - DoD Investments Are Required - Open Standard for Mil-Std-1553 Emulation on COTS Network - Open Interface Standard for Peer-to-Peer Military Protocols - Validation and Flight Test - The Driving Cost Factors Are Group A Aircraft Changes and the Software Impacts to Existing Avionics - Must Address How to Minimize These Costs for Each Aircraft - Configuration - Develop an Upgrade Plan for Modernization